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The Casimir force and free energy at low temperatures have been the subject of focus for some time. We
calculate the temperature correction to the Casimir-Lifshitz free energy between two parallel plates made of
dielectric material possessing a constant conductivity at low temperatures, described through a Drude-type
dielectric function. For the transverse magnetic �TM� mode such a calculation is made. A further calculation for
the case of the TE mode is thereafter presented which extends and generalizes previous work for metals. A
numerical study is undertaken to verify the correctness of the analytic results.
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INTRODUCTION

There has been an explosion of interest in the Casimir
effect �1�, generalized to dielectrics by Lifshitz �2�, since the
modern experiments began with Lamoreaux in 1997 �3�. The
zero-temperature Casimir-Lifshitz theory seems to have been
confirmed to 1% accuracy over a range from 100 nm to a
micrometer �4–12�.

However, there has been a continuing controversy over
the temperature dependence of this effect. The prescription
given in Ref. �13� was seriously questioned by Boström and
Sernelius �14� who pointed out that necessarily the trans-
verse electric reflection coefficient at zero frequency must
vanish for metals. This discontinuity predicted a linear tem-
perature term at low temperatures, resulting in about a 15%
correction to the result found by Lamoreaux. Lamoreaux be-
lieves that his experiment could not be in error to this extent
�15�. More heatedly, Mostepanenko and collaborators have
insisted that this behavior is inconsistent with thermodynam-
ics �the Nernst heat theorem� because it would predict, for an
ideal metal, that the free energy has a linear temperature term
at low temperature, and hence that the entropy would not
vanish at zero temperature �16�. Moreover, they assert that
the precision Purdue experiments rule out the linear tempera-
ture term in the low-temperature expansion �12�.

The issue is as yet unresolved, and is summarized in re-
cent reviews �17,18�. We will not add further to the discus-
sion of this controversy here. Rather, the purpose of this
paper is to examine another purported temperature anomaly.
In several recent papers �19–22� Geyer, Klimchitskaya, and
Mostepanenko have claimed that in real dielectrics, which

possess a very small, but nonzero conductivity which van-
ishes at T=0, a similar discontinuity in the transverse mag-
netic reflection coefficient occurs, which would lead to a
similar violation of the Nernst theorem. The same applies to
semiconductors whose conductivity vanishes as temperature
drops to zero. The solution according to these authors, as in
the TE case for good conductors, is to prescribe the effect
away. We argue, however, that such a solution is physically
unsatisfactory.

In Sec. I, we will review and clarify their argument for a
standard Drude-type permittivity model for a weakly con-
ducting material. We thereafter work out the leading-order
temperature corrections to the free energy in the cases where
the media are assumed to have a finite but small residual
conductivity at T=0, as is implied when a Drude model is
employed for taking the conductivity into account. This is a
new result to the best of our knowledge �a similar calculation
for materials with zero conductivity was undertaken in Ref.
�19��. While this calculation does not solve the thermal
anomaly brought forth in Refs. �19–21� and reviewed in Sec.
I, it serves to further illuminate the mathematical behavior of
the free energy of poor conductors at very low temperatures
when different models for the dielectric response of the ma-
terials are employed. A similar calculation is subsequently
performed for the TE mode, which extends that of Ref. �23�
in several ways: We allow for the conductivity to be small;
we work out one further order of the temperature correction
to the free energy; and we allow, for generality, the permit-
tivity to have a finite dielectric constant term in addition to
the Drude-type dielectric response due to free charges.

A word about units. For our theoretical calculations, it is
most convenient to use Gaussian electromagnetic units, as
well as natural space-time units: �=c=kB=1. However, for
final results, which could be experimentally observed, we
use Système International �International System of Units�
�SI� units. The mapping between units is very simply carried
out by dimensional considerations, using the unit conversion
factor �c=1.97�10−5 eV cm. The conductivity transforma-
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tion between Gaussian and SI units is the simple replacement
4��=�SI /�0, where �0=8.85�10−12 F /m is the absolute
permittivity of the vacuum and the notation �SI is used to
explicate that SI units are used.

I. TEMPERATURE ANOMALY FOR SEMICONDUCTORS

Here is a simple way to understand the argument of Ref.
�19�. Suppose we model a dielectric with some small con-
ductivity by the permittivity function

��i�� = 1 +
�̄ − 1

1 + �2/	0
2 +

4��

�
. �1.1�

The essential point is that as �→0, �→ �̄ if �=0, otherwise
�→
. The Casimir �Lifshitz� free energy between two half
spaces, separated by a distance a, assumed to be of the same
material for simplicity, is given by

F =
T

2�
�
m=0




��
�m




d���ln�1 − rTM
2 e−2�a� + ln�1 − rTE

2 e−2�a�� .

�1.2�

Here �, rTE, and rTM are functions of the discrete Matsubara
frequencies �m=2�mT; �2=k�

2 +�2 with k� the transverse
wave vector, directed parallel to the surfaces. As is conven-
tional, the prime on the summation mark implies the m=0
term be taken with half weight. We need to examine the
behavior of the reflection coefficients in the small � limit.
These are

rTE =
� − ��2 + �2�� − 1�

� + ��2 + �2�� − 1�
, �1.3�

rTM =
�� − ��2 + �2�� − 1�

�� + ��2 + �2�� − 1�
, �1.4�

where �=��i��. For the case of an ideal metal, it was rTE

which was discontinuous:

rTE�� = 0� = 0, lim
�→0

rTE = − 1, �1.5�

so this gave a linear temperature term when the sum over
Matsubara frequencies is converted to an integral according
to the Euler-Maclaurin formula, for example �Ref. �19� uses
the Abel-Plana formula, but that is equivalent�.

For a dielectric the TE reflection coefficient is continuous
and vanishes as �→0, but if there is a small �but not zero�
conductivity which vanishes with T linearly or faster, the TM
coefficient exhibits a discontinuity at �=0 as we now ex-
plain. When the conductivity is small we can assume there
exists a temperature so that the m=1 Matsubara frequency,
�1=2�T, satisfies the inequality

0 � 4�� 
 �1 
 	0, �1.6�

in which case

rTM�i� = 0� = 1, rTM�i�1� =
�̄ − 1

�̄ + 1
. �1.7�

Typical values of 	0 are in the optical or near IR frequency
regions, so Eq. �1.6� will hold at room temperature for many
semiconductors. If now � goes to zero as T→0 linearly or
faster, Eq. �1.6� continues to hold true all the way to zero
temperature where Eq. �1.7� becomes a true discontinuity,

rTM�i� = 0� = 1, lim
�→0

rTM�i�� =
�̄ − 1

�̄ + 1
. �1.8�

Clearly if � reaches some residual value �0, Eq. �1.6� will
not hold near zero temperature. Likewise the discontinuity
disappears should � be exactly zero in a temperature region
of finite width including T=0.

As in the metal case, Eq. �1.8� gives rise to a linear tem-
perature term in the pressure and the free energy �see, e.g.,
Ref. �17� and references therein for details�. Let fm be the
summand of Eq. �1.2� or a similar expression for the Casimir
pressure. Since fm is discontinuous at m=0, we must replace
it by a continuous function,

�
m=0




�fm =
1

2
f0 + �

m=1




fm =
1

2
�f0 − f̃0� + �

m=0




� f̃m, �1.9�

where f̃m is continuous,

f̃m = � f̃0
= lim

m→0
fm, m = 0,

f̃m = fm, m � 0, 	 �1.10�

so that the Euler-Maclaurin summation formula can be ap-

plied to the sum over f̃m. Then the first term in the third form
in Eq. �1.9� gives rise to a free-energy contribution which is
a linear function of T. Defining the shorthand notation

A0 = 
 �̄ − 1

�̄ + 1
�2

, �1.11�

that linear term is

FTM =
T

4�
�

0




d���ln�1 − A0e−2�a� − ln�1 − e−2�a��

=
T

4�
�
n=1



1

n
�A0

n − 1��
0




d��e−2n�a

=
T

16�a2 �Li3�A0� − ��3�� , �1.12�

where the polylogarithmic function is

Lin��� = �
k=1



�k

kn . �1.13�

Note that the linear term vanishes for �̄→
 as is clear from
noting the relation to the Riemann � function,

Lin�1� = ��n� . �1.14�

Thus at zero temperature, the entropy is nonzero,
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S = − 
 �F

�T
�

V
= −

1

16�a2 �Li3�A0� − ��3�� , �1.15�

which, if physical, is a violation of the Nernst heat theorem,
or the third law of thermodynamics, which states that the
entropy of a system must vanish at zero temperature.

II. GENERAL FORMALISM

For reference throughout the next sections we will go
though the formalism of determining the leading temperature
corrections to the Casimir �Lifshitz� free energy by use of the
Euler-Maclaurin formula, a procedure often employed previ-
ously.

Considering one polarization mode at a time, the free en-
ergy for the q mode �q=TM,TE� is written in the form

Fq = f�a,T��
m=0




�g�m� , �2.1�

where we have pulled out a convenient prefactor.
When T→0 the Matsubara sum becomes an integral, so

the temperature correction to the free energy, given by

�Fq = f�a,T���
m=0




� − �
0




dm
g�m� , �2.2�

can be determined by use of the Euler-Maclaurin formula.
For the summands of the Lifshitz formula, the higher deriva-
tives of g�m� are singular near m=0. When this is the case
the Euler-Maclaurin formula can be applied to the sum start-
ing at m=1 �or a higher value of m� instead, whereby

�̃ ���
m=0




� − �
0




dm
g�m�

=
1

2
g�0� − �

0

1

g�m�dm +
1

2
g�1� − �

k=1



B2k

�2k�!
g�2k−1��1�

=
1

2
g�0� − �

0

1

g�m�dm +
1

2
g�1� −

1

12
g��1� +

1

720
g��1�

− ¯ , �2.3�

where Bn are the Bernoulli numbers,

B2 =
1

6
; B4 = −

1

30
; B6 =

1

42
; . . . , �2.4�

using the convention of �24� Sec. 23.2. �Two remarks are
called for here: We have assumed that g and all its deriva-
tives vanish at infinity, and we have converted this formula
into one which is commonly asymptotic because we have
omitted the remainder term which is present when only a
finite number of derivatives terms are retained. Thus we are
considering only the leading terms in an asymptotic expan-
sion for small T.�

As mentioned above, g�m� is not analytic at m=0. It can
be written in the asymptotic form for small m

g�m� � c0 + c1m + c3/2m3/2 + c2lm
2 ln m + c2m2 + ¯ ,

�2.5�

m → 0.

The terms needed for the right-hand side of Eq. �2.3� are
now

g�0� = c0, �2.6a�

g�1� = c0 + c1 + c2 + c3/2 + ¯ , �2.6b�

g��1� = c1 + c2l + 2c2 +
3

2
c3/2 + ¯ , �2.6c�

g��1� = 2c2l −
3

8
c3/2 + ¯ , �2.6d�

�
0

1

dmg�m� = c0 +
1

2
c1 −

1

9
c2l +

1

3
c2 +

2

5
c3/2 + ¯ .

�2.6e�

When inserted into Eq. �2.3� the terms involving c0 and c2
cancel and one is left with

�̃ � −
c1

12
+

11c2l

360
−

49

1920
c3/2 + ¯ . �2.7�

Here the term due to c1 is exact, whereas the terms with c2l
and c3/2 receive contributions from all higher derivatives in
the Euler-Maclaurin formula, and to obtain exact expressions
for the coefficients, all such terms must be kept, as we now
show.

Retaining the higher derivative terms in the Euler-
Maclaurin formula one finds by using

�2n = � d2n−1

dm2n−1m3/2�
m=1

= −
3�4n − 7�!

24n−5�2n − 4�!
, n � 2,

�2.8a�

and

�2n = � d2n−1

dm2n−1m2 ln m�
m=1

= 2�2n − 4�!, n � 2,

�2.8b�

that the temperature correction to free energy is

�Fq = f�a,T��̃ , �2.9�

where with Eq. �2.3�,

�̃ = −
c1

12
+ �c2l + �c3/2 + ¯ , �2.10�

with the coefficients

� =
1

9
−

B2

2
− �

n=2



B2n�2n

�2n�!
, �2.11a�

TEMPERATURE CORRECTION TO CASIMIR-LIFSHITZ… PHYSICAL REVIEW E 78, 021117 �2008�

021117-3



� =
1

2
−

2

5
−

3B2

4
− �

n=2



B2n�2n

�2n�!
. �2.11b�

These series are formally divergent as is typical for pertur-
bation series near singularities. Indeed, they arise from the
asymptotic Euler-Maclaurin formula �2.3�. For example, �
can be recognized as a special case of the expansion of the
Riemann � function in terms of Bernoulli numbers, Eq.
23.2.3 of Ref. �24� with an infinite number of terms retained
in the sum, and the remainder omitted. A meaningful value
can nonetheless be assigned to them through Borel summa-
tion as detailed in the Appendix. Numerically, the math-
ematical software Maple computes the numerical values by
means of a Levin u transform to

� = 0.03044845705840 . . . , �2.12a�

� = − 0.0254852018898 . . . . �2.12b�

By either numerical or analytical correspondence we thus
recognize that

� = �
−
3

2
� , �2.13a�

� =
��3�
4�2 , �2.13b�

where � is the Riemann � function.
When Eq. �1.1� is used in the Lifshitz formalism with

constant and finite � and �̄�1 in Secs. III and IV, we will
find that the terms of F stemming from c1, c3/2, and c2l are
proportional to T2, T5/2, and T3, respectively. Higher-order
terms of g�m� will likewise give higher-order temperature
corrections.

III. TM MODE, RESIDUAL CONDUCTIVITY

In the following sections we will work out the low-
temperature behavior of corrections to the free energy under
the assumption that a Drude-type dielectric function �1.1�
may be used, and that � is finite and constant with respect to
� and T for small T and �. As argued in Ref. �25�, when � is
finite close to zero temperature Nernst’s theorem will be sat-
isfied. Here we will calculate explicitly the low-temperature
behavior of the free energy for the TM mode.

Conventionally, semiconductors are found within the
broad interval of conductivity �SI in SI units 10−5 �� m�−1

��SI�105 �� m�−1, that is

106 s−1 � �SI/�0 � 1016 s−1. �3.1�

For numerical purposes we will use the intermediate value
�SI /�0=1012 s−1, which is large enough not to hamper nu-
merical verification unnecessarily, but small enough to dis-
tinguish the material in question from a good metal. The
frequency corresponding to �SI /�0 for a metal is 	p

2 /�, where
	p is the plasma frequency and � the relaxation frequency.
For gold at room temperature 	p

2 /� has the approximate
value 3.5�1022 s−1.

Returning to Gaussian units, we consider the TM mode
and introduce the shorthand notation

t =
�1

4��
=

2�T

4��
=

2�kBT

���SI/�0�
�3.2�

and the symbol

� = mt . �3.3�

If 4��=1012 s−1 as assumed above,

t � 0.83T , �3.4�

with T in Kelvin.
The free energy is given by Eq. �1.2�, for which we now

consider only the TM term,

FTM =
T

2�
�
m=0




��
�




d�� ln�1 − Ae−2�a� , �3.5�

where the reflection coefficient squared is

A � rTM
2 = 
� − �1 + �� − 1���/��2

� + �1 + �� − 1���/��2�2

. �3.6�

Here and henceforth the index m on Matsubara frequencies
�m and quantities dependent on it will frequently be sup-
pressed.

The temperature corrections to the free energy at low tem-
peratures are dominated by small frequencies, so we can as-
sume as an approximation that the middle term of Eq. �1.1� is
simply equal to �̄−1 and write

��i�� � �̄ +
4��

�
= �̄ +

1

�
. �3.7�

We define the dimensionless quantity

� = 2a�4��� =
2a

c
��SI/�0� , �3.8�

where a is the distance between the semiconductor plates.
For the value 4���1012 s−1 or smaller, � is a small quan-
tity, which we use to define a criterion for the smallness of
the conductivity in the remainder of this paper,

� 
 1. �3.9�

For a=1 �m and � as above, as used for numerical purposes
later, � has a value of about 6.7�10−3, so this criterion is
well satisfied.

By defining the variable x,

x = 2�a =
��

4��
=

���

�
, �3.10�

A can be written

A = 
1 + �̄� − ��1 + �1 + ��̄ − 1����2�/x2

1 + �̄� + ��1 + �1 + ��̄ − 1����2�/x2�2

,

�3.11�

and the integral �3.5� with the use of Eq. �3.2� and �
=2�mT becomes
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FTM �
�4���3t

4�2�2 �
m=0




�g�m� , �3.12�

where

g�m� = �
��




dxx ln�1 − Ae−x� . �3.13�

We wish now to extract explicitly the temperature depen-
dence of the integrals g�m� in Eq. �3.13�. The procedure we
choose is to expand Eq. �3.13� to leading order in the small
parameter �, and then expand the resulting term in powers of
m to obtain the form �2.5�.

The first term in the Taylor expansion of the logarithm in
powers of � is

ln�1 − Ae−x� = − Li1�A�e−x� + O��2� �3.14�

where we use the polylogarithmic function defined in Eq.
�1.13� and define the quantity

A� = 
1 + ��̄ − 1��
1 + ��̄ + 1��

�2

. �3.15�

For integral s�1 the polylogarithm Lis�y� can be expressed
by elementary functions, specifically

Li1�y� = − ln�1 − y�; Li0�y� =
y

1 − y
;

Li−1 =
y

�1 − y�2 . �3.16�

The summand g�m� thus has the form

g�m� = − �
��




dxx Li1�A�e−x� + O��2� . �3.17�

Now we will expand g�m� in powers of m. It is easy to
show from Eq. �1.13� that

� dy Lin�Ce−�y� = −
1

�
Lin+1�Ce−�y�; �3.18�

from which by partial integration

g�m� = − �� Li2�A�e−��� − Li3�A�e−��� + O��2� .

�3.19�

We now use the property

Lin�Ce−y� = �
l=0



�− y�l

l!
Lin−l�C� �3.20�

for �C��1 to expand the polylogarithms in powers of ��.
The terms containing Li2 then cancel and we are left with

g�m� = − Li3�A�� +
1

2
�2�2Li1�A�� + O��2� �3.21�

with A� given by Eq. �3.15�. Henceforth we shall denote the
first two terms of the expansion �3.21� gI�m� and gII�m�. The
remaining O��2� term comes from the error in Eq. �3.14�. As

before we are going to truncate the expansion in � at leading
order, but will evaluate the explicit correction ��2 to Eq.
�3.21� later as a measure of the error. We thus have the
simple expression

gI�m� = − Li3�A�� . �3.22�

We will next expand Eq. �3.22� in �. Li3�A�� does not
have a Taylor expansion near m=0 �where A0=1� because its
second derivative is singular here. Using

d

dy
Lin�y� =

1

y
Lin−1�y� , �3.23�

we differentiate Eq. �3.22� to find

gI��m� =
4t Li2�A��

�1 + ��̄ + 1����1 + ��̄ − 1���
. �3.24�

We can use the identity �26�

Li2�z� + Li2�1 − z� =
�2

6
− ln�z�ln�1 − z� , �3.25�

which is easily verified by differentiation, use of Eq. �1.13�,
and Li2�1�=�2 /6. Furthermore, Li2�1−A�� has a simple Tay-
lor expansion around A�=1,

Li2�1 − A�� = 4� − 4��̄ + 1��2 + ¯ �3.26�

and

4

�1 + ��̄ + 1����1 + ��̄ − 1���
= 4 − 8�̄� + ¯ , �3.27�

whereby we find

gI��m� =
2�2t

3
− 4mt2
 �̄�2

3
+ 4� + 16mt2 ln 4� + ¯ ,

�3.28�

where the next term of the series is of order t3.
Comparing with Eq. �2.5� we recognize the coefficients

c1 =
2�2t

3
, c2l = 8t2, �3.29�

which we insert into Eq. �2.10� to find

��
m=0




� − �
0




dm
gI�m� = −
�2t

18
+ 8�t2. �3.30�

We thus obtain the approximate correction to the free en-
ergy for small t,

�FI
TM =

�4���3t

4�2�2 ��
m=0




� − �
0




dm
gI�m�

� −
�4���3

72�2�2 t2��2 − 144�t� �3.31�

in terms of our reduced units t and �. In SI units, inserting
Eq. �2.13b�,
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�FI
TM = −

�2�kBT�2

72���SI/�0�a2 +
��3��kBT�3

�����SI/�0�a�2

= −
�2�kBT�2

72���SI/�0�a2
1 −
72��3�kBT

�3��SI/�0
� . �3.32�

A. Correction due to subleading terms of Eq. (3.21)

Twice in the above we truncated the expressions at lead-
ing order in the parameter �, in Eq. �3.14� and Eq. �3.21�. As
an indication of the magnitude of the error we will calculate
the next order in � of Eq. �3.21� while a similar calculation
for Eq. �3.14� is more troublesome due to singularities and
beyond the scope of the present effort. The correction ��2 of
Eq. �3.21� was

�g�m� =
1

2
�2m2t2Li1�A�� + O��3t3� . �3.33�

We will only consider the first term, since the next terms give
temperature corrections �T4 and higher. We Taylor expand
as before in powers of �,

Li1�A�� = − ln�4t� − ln m + ��̄ + 2�� + O��2� , �3.34�

from which the leading correction from �gI�m�, is found
from Eq. �2.10� to order T3 to which only the term �m2 ln m
contributes,

�FTM =
�4���3t

4�2�2 ��̃ �
�4���3�t3

8�2 . �3.35�

Being � independent, the correction �3.35� is much smaller
than the leading term �3.31� for small �. In SI units,

�FTM =
��3��kBT�3

4��2c2 + O�T4� . �3.36�

The relative magnitude of this term compared to the T3 term
of Eq. �3.32� is with our numerical data

��SI/�0�2a2

4c2 � 2.8 � 10−6. �3.37�

The correction from the truncation of Eq. �3.14� is likely to
be of similar size and therefore much smaller than the accu-
racy of the numerical investigation.

B. Numerical investigation of TM mode result

The numerical investigation in Fig. 1�a� employs Eq. �1.1�
with �SI /�0=1012 s−1, �̄=11.67, and 	0=8�1015 s−1 as ap-
propriate for Si �27�. While the analytical expression fits well
for T�0.1 K, corrections �T4 become important beyond
this point. The two leading orders in temperature corrections
were shown to be independent of �̄ to leading order in �, but
the T4 correction �not calculated analytically herein� depends
heavily on this value. A qualitative measure of this effect is
given in Fig. 1�b� where we have used �̄=1, cetera paribus.
In all plots the curves are given by Eq. �3.32� with and with-
out inclusion of its second term.

It is noteworthy that, as seen from Fig. 1, while the �−1

term of Eq. �1.1� gives the dominant temperature correction
for small T, nearly all �99.7% with our data� of the free
energy at T=0 is due to the �̄ term.

While the fit pictured in Fig. 1 is indicative, a much more
sensitive confirmation of the accuracy of the theoretical re-
sults is provided by considering the quantity

R =
�Fth − �Fnum

�Fth
, �3.38�

where �Fnum is the direct numerical calculation and �Fth is
the theoretical result to next-to-leading order, in the form
�3.31�. An analysis exactly similar to this was performed in
Ref. �23�; the reader may refer to that paper for further de-
tails.

We have found that �Fth is of the form

�Fth = − CT2�1 − C1T� �3.39�

and assume �Fnum to be of the form
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FIG. 1. FTM and its approximation with �a� �̄=11.67 and
�b� �̄=1. Correction curves, calculated from Eq. �3.31�, are shifted
to match the numerical calculations at T=0 in each graph.
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�Fnum = − DT2�1 − D1T + D2T2 + ¯ � , �3.40�

from which one finds

R =
C − D

C
−

D

C
�C1 − D1�T −

D

C
�D2 + C1�C1 − D1��T2 + ¯ .

�3.41�

In the special case where C=D and C1=D1, this becomes

R = − D2T2 + O�T3� �3.42�

which is zero in the limit T=0 and has zero slope in this
limit. The zero-temperature limit of R and its slope thus pro-
vide measures of the accuracy of the theoretical results: if the
T2 coefficient is correct, R should approach zero as T→0,
and if the T3 coefficient is correct, the slope of R�T� should
vanish in this limit as well. We have not taken the corrections
�3.36� into account in the plotting of Fig. 2.

We have undertaken a numerical study of the behavior
close to zero temperature, resulting in the graph of R shown
in Fig. 2. Due to the vanishing denominator of Eq. �3.38�, the
analysis is extremely sensitive to numerical errors as the zero
temperature limit is approached. From the figure it seems
clear that the errors in the two coefficients are small enough
to confirm the correctness of Eq. �3.31�, although some cau-
tion must be exerted due to the numerical volatility of R.
Comparing Fig. 2 to Eq. �3.42� it is clear that D2�0 which
implies that the coefficient of the T4 term of the free energy
be positive, which conforms with the corrections in Fig. 1
not accounted for to order T3.

IV. TE MODE, RESIDUAL CONDUCTIVITY

For the TE mode the dominant temperature correction to
the free energy comes from the last term of Eq. �1.1�. The
permittivity �1.1�, which can be approximated as Eq. �3.7�, is
similar, but not identical, to that for a Drude metal, consid-
ered in Refs. �23,28�. There, instead of Eq. �3.7� the permit-
tivity was assumed to be

�metal = 1 +
	p

2

��� + ��
� 1 +

	p
2

��
. �4.1�

The principal difference is that the constant term �̄ is as-
sumed to be significant here and kept general. Since for
small � the term ��−1 dominates the constant term, an ap-
proximation to the low-temperature behavior of the dielectric
would be expected to be found by the same analysis as that
of Refs. �23,28� but with the substitution

	p
2

�
→ 4�� . �4.2�

For typical semiconductors, 4�� is smaller than 	p
2 /� for a

good metal by many orders of magnitude. For this reason,
since the free energy at zero temperature is of the same order
of magnitude for the metals and semiconductors for the same
separation, the relative temperature corrections for the TE
mode are expected to be much smaller than for a metal.
Thus, there is reason to investigate whether the effects of
�̄�1, while negligible for a metal, could be important for
small �. In some dielectric materials, as is well known, �̄ can
exceed unity by as much as two orders of magnitude, and a
more careful analysis is therefore justified. The procedure is
the same as above, and an extension of that found in Ref.
�23�, to which the reader may turn for further detail.

It was found in Refs. �23,28� that for T→0, and �̄=1,

�FTE = C2T2 − C5/2T5/2 + ¯ , �4.3�

where

C2 =
�4���

48
�2 ln 2 − 1� , �4.4a�

C5/2 =
�2�

6
��− 3/2��4���3/2a . �4.4b�

Here ��y� is the Riemann � function �for this closed form of
C5/2, see Appendix A of Ref. �23��.

For the numerical values indicated this gives the SI values

C2 = 1.618 571 9 � 10−19 J

K m2
 �SI/�0

1012 s−1� , �4.5a�

C5/2 = 2.584 437 3 � 10−22 J

K5/2 m2
 a

1 �m
�
 �SI/�0

1012 s−1�3/2

.

�4.5b�

Thus the TE temperature correction is expected to be posi-
tive and in the order of magnitude of 10−19 J /m2 at T=1 K.

The numerical calculations shown in Fig. 3 were compli-
cated by the fact that the thermal corrections are many orders
of magnitude smaller than the free energy at zero tempera-
ture, making a graph of the quantity R similar to Fig. 2
unfeasible within the assumption of �
1. We show here,
however, that assuming �̄�1 does not change the theoreti-
cally predicted thermal correction to the free energy to order
T3, and therefore merely refer to Ref. �23� for further numeri-
cal support of the theoretical result.
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FIG. 2. The quantity R defined in Eq. �3.38� plotted for the TM
result �3.31� and numerical calculations.
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A. More general treatment of the TE mode

Let us treat the TE mode temperature correction to the
free energy more carefully. Starting with the expression �1.2�
we perform the substitution

x =
�

����i�� − 1
=

��

��
�4.6�

where we define the recurring quantity

� = �� + ��̄ − 1��2. �4.7�

Then the free energy may be written

FTE =
�4���3t

4�2 �
m=0




�g�m� �4.8a�

with

g�m� = �2�
�/�




dxx ln�1 − Be−��x� . �4.8b�

The squared reflection coefficient given by Eq. �1.3� now
depends only on x,

B = �x − �x2 + 1�4. �4.9�

We expand the integrand of g�m�,

ln�1 − Be−��x� = ln�1 − B� +
��xB

1 − B
+ ¯ . �4.10�

Note that this is as far as we can expand this way, since the
next term of the � expansion gives a divergent contribution
�an alternative method which avoids some divergences but is
somewhat more cumbersome is the method employed in Ap-
pendix A of Ref. �23� where the corrections are calculated
without the use of the Euler-Maclaurin formula�.

Consider the first terms of the expansion �4.10� �we dub
the terms of g�m� from the expansion gI�m� ,gII�m� , . . .�,

gI�m� = �2�
�/�




dxx ln�1 − �x − �x2 + 1�4� . �4.11�

This integral can be evaluated explicitly �a similar integral
was evaluated in Ref. �23� where the lower limit was ap-
proximated as zero�. Perform the substitution x=sinh u. Then
we may write

gI�m� =
�2

4
�

u0




du�e2u − e−2u�ln�1 − e−4u� �4.12a�

with

u0 = arsinh
�

�
=

1

2
ln
��̄� + 1 + ��

��̄� + 1 − ��
� . �4.12b�

With the substitution y=e−2u,

gI�m� =
�2

8
�

0

y0

dy�y−2 − 1�ln�1 − y2� , �4.13a�

where

y0 = e−2u0 =
��̄� + 1 − ��

��̄� + 1 + ��

= 1 − 2�� + 2� + ��̄ − 2��3/2 + ¯ . �4.13b�

The integral is straightforward to evaluate and the result is

gI�m� = −
�2

8
�
 1

y0
+ y0�ln�1 − y0

2� − 2y0 + 2 ln
1 + y0

1 − y0

 .

�4.14�

We expand this in powers of � and find that the terms
��3/2 cancel, consistent with the small-x dependence of the
integrand of gI�m�. We are left with

gI�m� = −
�

4
�2 ln 2 − 1� −

�2

4
�ln 4� + �̄�2 ln 2 − 1��

+
2

3
�5/2 + O��3� . �4.15�

Comparing with Eq. �2.5� we see

c1 = −
t

4
�2 ln 2 − 1� and c2l = −

t2

4
, �4.16�

while the dependence on �̄ only enters in the c2 term �m2

which does not contribute to the Euler-Maclaurin formula.
The temperature correction to first order in � is thus

�FI
TE �

�4���3t2

4�2 �2 ln 2 − 1

48
−

�t

4

 . �4.17�

We see that the leading term conforms with Eq. �4.3� when
Eq. �4.4a� is inserted. The first term beyond those calculated
is proportional to T7/2 according to Eq. �4.15�. In SI units
with �2.13b�,

�FI
TE �

�SI�kBT�2

48�0�c2 �2 ln 2 − 1� −
��3��kBT�3

8��2c2 . �4.18�
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FIG. 3. Temperature dependence of the free energy for TE at
1 micron separation. The solid line is an exact numerical calcula-
tion including all terms of Eq. �1.1� with �̄=11.66 and 	0=8.0
�1015 s−1, the dashed line is the parabolic temperature correction
�4.3�. The term �T5/2 is too small to be visible in the graph.
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The T3 term of Eq. �4.18� has the same form as that found
for ideal metals in the limit aT
1 �29,30�. A similar term is
present in Eq. �3.36�. �Note that the T3 correction for the TM
mode is not fully accounted for therein.� A numerical com-
parison of this term with the difference between the graphs in
Fig. 3 is shown in Fig. 4. It shows that the T3 coefficient in
Eq. �4.18� is the right order of magnitude, but the numerical
precision is not sufficient to draw definite conclusions about
its accuracy at this time.

B. First-order correction to expansion (4.10)

The first-order correction term in Eq. �4.10� is easily cal-
culated with a similar scheme. We have

gII�m� = ��3�
�/�




dx
x2B

1 − B
=

��3

4
�

�/�




dx
x�x − �x2 + 1�2

�x2 + 1
.

�4.19�

The procedure for solving this integral is as before. Substi-
tute x=sinh u to obtain with a little shuffling

gII�m� =
��3

8
�

u0




due−u�1 − e−2u� . �4.20�

With the substitution z=e−u this becomes very simple,

gII�m� = −
��3

8
�

z0

0

dz�1 − z2� =
��3

8

z0 −

z0
3

3
� �4.21�

with

z0 = e−u0 = 
��̄� + 1 − ��

��̄� + 1 + ��
�1/2

= 1 − �� +
�

2
+

1

2
��̄ − 1��3/2 + ¯ . �4.22�

Thus we find the � expansion of gII�m�,

gII�m� =
�

8

2

3
�3/2 − �2 − �̄��5/2 + ¯ � . �4.23�

Hence, with Eqs. �2.10� and �4.8a�,

�FII
TE =

�4���3�

48�2 �t5/2 + O�t7/2� , �4.24a�

or in SI units with �=��− 3
2 �,

�FII
TE =

�2��
−
3

2
�a��SI/�0�3/2

6�3/2 �kBT�5/2 + ¯ .

�4.24b�

Comparison with Eq. �4.4b� shows full agreement with the
result for metals ��̄=1�.

It is worth noting that while the next-to-leading tempera-
ture correction is of order T5/2, the term �T3 in Eq. �4.18�
dominates it with respect to �. Thus in the small � limit the
T5/2 dependency becomes all but imperceptible.

CONCLUSIONS

We have worked out the two leading terms of the tem-
perature correction to the Casimir-Lifshitz free energy at low
temperatures between poor conductors obeying a Drude-type
dispersion relation. We have assumed that the materials have
a small residual conductivity �compared to the reciprocal of
the interplate separation� which is finite and constant with
respect to temperature and frequency near T=0.

The calculation for the TM mode complements that of
Ref. �19� where the temperature correction for free energy
between two dielectrics of zero conductivity was calculated.
Both the TE and TM free energy temperature corrections are
quadratic to leading order. To the extent of our computations,
the TM mode has integer powers of T beyond the leading,
whereas the TE mode has both integer and half-integer pow-
ers. The temperature anomaly reviewed in Sec. I occurs
when the transition from finite to zero conductivity happens
at exactly T=0, and while the analysis presented here does
not resolve the anomaly, it is of interest to know the low-
temperature behavior of the free energy in each of the two
cases.

Note furthermore that the effects of the static dielectric
permittivity �̄ only enters to order T4 for the TM mode and
order T7/2 for the TE mode. The fact that the coefficient of
the term T7/2 appears to depend on �̄ is noteworthy since
only integer powers of T were reported in Ref. �19�, although
seeing as we have not calculated the coefficient here it is
possible that cancellations occur.

Our calculations are delicate since they rely on the rela-
tive smallness of different parameters simultaneously. We
have assumed the parameter t �essentially temperature T di-
vided by conductivity �� small while at the same time letting
� be small compared to the inverse of the separation a. This
is the reason why the leading order temperature corrections
in Eq. �3.31� appear to diverge as � vanishes. On a deeper
level these subtleties stem from noncommuting limits in the
Lifshitz formalism which are the cause of anomalies such as
that reviewed in Sec. I. Another curious property both of the
present calculations and those of Geyer, Klimchitskaya, and
Mostepanenko �19� is that the free energy corrections of or-
der in T just beyond what we have considered here appear to
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FIG. 4. The difference between the numerically calculated free
energy and the quadratic T term of Eq. �4.18� �equal to the differ-
ence between the graphs in Fig. 3� plotted against the absolute value
of the T3 term of Eq. �4.18�.
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diverge as �̄→
, as indicated for example by Eqs. �3.34�
and �4.23�. This limit would a priori be expected to yield the
ideal metal limit. Such phenomena should be addressed in
future studies in the effort to achieve full understanding of
the low-temperature behavior of the Casmir force and free
energy.

The asymptotics of the Lifshitz formula as frequency and
temperature approach zero are fraught with inherent subtle-
ties both mathematical and physical. While the method em-
ployed herein is highly useful for its simplicity and transpar-
ency, it has limitations because the functions involved are not
analytic in the limits considered and noninteger powers and
logarithms enter. Physically we have assumed herein a model
which may represent certain physical systems, but avoids the
temperature behavior which leads to the anomaly reviewed
in Sec. I. It also neglects effects which may be of impor-
tance, such as spatial dispersion, a subject which has been
extensively investigated over the years �31–34�. A theoretical
effort to attempt to describe the screening effects and dielec-
tric response of the vanishing density of free charges in in-
sulators near zero temperature involving all important physi-
cal effects will likely be required in the future and will
hopefully provide the resolution of the anomaly for dielec-
trics.

ACKNOWLEDGMENTS

K.A.M.’s research is supported in part by a grant from the
US National Science Foundation �Grant No. PHY-0554926�
and by a grant from the US Department of Energy �Grant
No. DE-FG02-04ER41305�. S.A.E. acknowledges the Uni-
versity of Oklahoma for its hospitality while working on this
project. We have benefited from discussions and suggestions
from Emilio Elizalde, Klaus Kirsten, and Jef Wagner.

APPENDIX: BOREL SUMMATION

The Borel sum of the divergent series �n=0

 an exists �Ref.

�35�, Sec. 8.2� if the function

��x� = �
n=0



anxn

n!
�A1�

is convergent for sufficiently small x and the integral

B�x� = �
0




dte−t��xt� �A2�

exists. Then the Borel sum is �n=0

 an=B�1�. Consider the

quantity � defined in Eq. �2.11a� and consider the term

�̃ = �
n=2



B2n�2n − 4�!

�2n�!
= �

n=4



Bn�n − 4�!

n!
�A3�

�the latter equality follows from B2n+1=0, n=1,2 , . . .�. Let-
ting an−4=Bn�n−4�! /n! we obtain

��x� = �
n=0



Bn+4xn

�n + 4�!
=

1

x4� x

ex − 1
− 1 +

x

2
−

x2

12

 , �A4�

where the identity �n=0

 Bnxn /n!=x / �ex−1� was used. The

Borel sum

�̃ = B�1� = �
0


 dte−t

t4 � t

et − 1
− 1 +

t

2
−

t2

12

 �A5�

is now possible to evaluate analytically �the divergence in
the lower limit is illusory because the expression in brackets

is of order t4� to find the desired value as �=1 /36−2�̃
=��3� / �4�2�. A similar numerical procedure using Eqs. �A1�
and �A2� will give the value of �, which as noted in the text
has a well-known asymptotic expression.

An alternative and equivalent approach which is most of-
ten simpler is to sum each term of the expansion of g�m� in
Eq. �2.5� directly �disregarding the zero temperature contri-
bution� and obtain finite values of the terms of the tempera-
ture expansion by means of � regularization �36�. Such a
procedure immediately yields �=��− 3

2 � by the definition of
the � function as the analytic continuation of ��s�=�m=1


 m−s.
Likewise the value of � can easily be found by comparison
with the asymptotic series expansion of the derivative of ��s�

���s� = − �
n=1




n−s ln n , �A6�

whereby �=−���−2�=��3� /4�2. The same reasoning also
yields the coefficient of the c1 term of Eq. �2.10� directly as
��−1�=−1 /12. We thank Emilio Elizalde for alerting us to
this point.
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